Commission B

<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B01</td>
<td>10 (two sessions)</td>
</tr>
</tbody>
</table>

Antenna theory, design, and measurement 1 & 2

Conveners (two minimum, three suggested):
John Volakis, Debatosh Guha, Andrea Michel

Convener Emails:
jvolakis@fiu.edu, dgirpe@yahoo.co.in, andrea.michel@iet.unipi.it

This session aims to present progress in the theory and practice of antenna design, measurements and their deployment in wireless systems. It covers novel antenna designs and their analysis, small antennas, antenna and propagation measurement techniques, active antennas, and matching techniques, as well as structures that enable improved antenna designs, including metamaterial-based surfaces and substrates.

<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B02</td>
<td>5</td>
</tr>
</tbody>
</table>

Memorial session for Prof. Thomas B. A. Senior

Conveners (two minimum, three suggested):
John Volakis, Kazuya Kobayashi, Paul Smith

Convener Emails:
jvolakis@fiu.edu, kazuya@tamacc.chuo-u.ac.jp, paulsmith2468@gmail.com

Prof. Thomas B. A. Senior has played a central role in URSI and the development of diffraction methods for impedance surfaces and a variety of canonical bodies. He also served as the Vice President and President of URSI from 1993-1999. This session will honor his technical contributions and service to the scientific community and URSI.

<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B03</td>
<td>10 (two sessions)</td>
</tr>
</tbody>
</table>

Propagation and scattering: advances, trends and new applications 1 & 2

Conveners (two minimum, three suggested):
Robert Burkholder, Danilo Erricolo, Guido Lombardi, Carlo Riva

Convener Emails:
burkholder.1@osu.edu, derric1@uic.edu, guido.lombardi@polito.it, carlo.riva@polimi.it

Recently, there has been a sharp increase in activities related to the study of propagation and scattering phenomena at frequencies significantly above 5 GHz. One of the main reasons is that propagation and scattering studies are needed as part of the investigations related to the definitions of the standards for the upcoming 5G wireless communications. On the other hand, sensors to be used for self-driving vehicles operate in the 24 GHz and 77 GHz bands. For these reasons, a renewed interest in the physics of Electromagnetic wave propagation and scattering in complex environments has arisen. Theoretical, statistical and numerical models together with experimental data are the foci of this special session.

<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B04</td>
<td>10 (two sessions)</td>
</tr>
</tbody>
</table>

Advanced algorithms in computational electromagnetics 1 & 2

Conveners (two minimum, three suggested):
Shinichiro Ohnuki, Vladimir Okhmatovski, Qing Huo Liu

Convener Emails:
ohnuki.shinichiro@nihon-u.ac.jp, Vladimir.Okhmatovski@umanitoba.ca, qhliu@duke.edu

This session will focus on most recent advances of numerical methods, numerical techniques, and their applications in computational electromagnetics. Potential topics may include (but are not limited to):
- Fast, efficient, and accurate methods
- Recent advances in the integral equations of electromagnetics
- Numerical modelling and optimization
- Multiscale and multiphysics algorithms
- High performance computing and computer architecture
- Machine learning
<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B05</td>
<td>5</td>
</tr>
</tbody>
</table>

Memorial session for Prof. Jean Van Bladel

Conveners (two minimum, three suggested):
Peter Van Daele, Piergiorgio L. E. Uslenghi, Ari Sihvola

Convener Emails:
Pet.VanDaele@UGent.be, uslenghi@uic.edu, ari.sihvola@aalto.fi

Prof. Jean Van Bladel has served URSI over many years in different positions: as Honorary President (1999-2018), Secretary General (1979-1993) and Chairman of Commission B (1975-1977) and had a lasting impact on science, the scientific community and engineering education and students for over more than half a century. Over his distinguished scientific career Jean Van Bladel received many prestigious awards such as Heinrich Hertz Medal and the Antennas and Propagation Society’s 1997 Distinguished Achievement Award from the IEEE, an Honorary Doctor’s Degree from the University of Liège and both in 1978 and 1984 he was awarded the Francqui Chair at the Free University of Brussels. Through his book “Electromagnetic fields” first printed by McGraw Hill (New York) in 1964, later reprinted by the Hemisphere Publ. co in New York in 1985 and the second edition in 2007 printed by IEEE Press and John Wiley and Sons, Jean Van Bladel has made vast and outstanding contributions to science in general and to electromagnetic theory and applications in particular. His work has been important resources to researchers and teachers alike, and they will stand the test of time.

<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B06</td>
<td>5</td>
</tr>
</tbody>
</table>

Inverse scattering and imaging

Conveners (two minimum, three suggested):
Lianlin Li, Matteo Pastorino, Shouhei Kidera

Convener Emails:
lianlin.li@pku.edu.cn, matteo.pastorino@unige.it, kidera@ee.uec.ac.jp

This session aims to focus on Electromagnetic wave techniques, both active and passive and of interest to sensing and imaging related to security applications. Examples include landmine detection, identification of intruders, search and rescue in disaster events, vehicle collision avoidance, security checking at airports, etc. Wavelengths of interest include radio to X-ray waves, and UWB (Ultra-Wideband) signals to improve range and cross resolution for indoor and medical imaging. Some of these applications require super resolution and/or very fast computation for real time images with high quality and reliability. Theoretical investigations and studies aiming to other type of applications are also welcomed.
<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B07</td>
<td>5</td>
</tr>
</tbody>
</table>

Integral equation, hybrid, and fast methods

Conveners (two minimum, three suggested):
Francesco Andriulli, Thomas Eibert

Convener Emails:
francesco.andriulli@polito.it, eibert@tum.de

Integral equation solutions provide very accurate and robust results of scattering, radiation and field transformation problems. Due to their global nature, they lead, however, in a straightforward solution approach to fully-populated operator equations, which in turn result in field solvers with a bad numerical complexity. Fast integral solvers aim at reducing the bad solution complexity and this can be achieved by a variety of different techniques. The focus of this session is primarily on integral equation formulations, discretization approaches, and corresponding hybrid methods as well as on fast iterative and direct solvers, which reduce the solver complexity of the operator equations in the context of radiation, scattering, or field transformation problems, where free-space or other Green's functions (as e.g. for layered media) are used. Improvements of existing techniques are as welcome as completely new approaches. The techniques can be based on purely algebraic, but also on physics motivated procedures. They can work in time-domain or in frequency domain, where low-frequency, high-frequency, and very wideband techniques are of interest.

<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B08</td>
<td>10 (two sessions)</td>
</tr>
</tbody>
</table>

Novel mathematical methods in electromagnetics 1 & 2

Conveners (two minimum, three suggested):
Kazuya Kobayashi, Yury Shestopalov

Convener Emails:
kazuya@tamacc.chuo-u.ac.jp, Yury.Shestopalov@hig.se

This session will cover recent achievements in the area of advanced analytical and numerical methods as applied to various problems arising in all branches of electromagnetics. Topics of interest include, but are not limited to, the following areas: analytical regularization methods; canonical problems; computational electromagnetics; electromagnetic theory; gratings and periodic structures; guided waves; high-frequency techniques; integral equation methods; inverse problems; metamaterials; nonlinear phenomena; novel mathematical techniques; numerical methods; radar cross section; random media and rough surfaces; scattering and diffraction; time-domain techniques; waves in complex media; Wiener-Hopf technique.
<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B09</td>
<td>10 (two sessions)</td>
</tr>
</tbody>
</table>

Mathematical modelling of EM problems 1 & 2

Conveners (two minimum, three suggested):
Paul Smith, Piergiorgio L. E. Uslenghi

Convener Emails:
pauldsmith2468@gmail.com, uslenghi@uic.edu

This session will address recent developments in the mathematical modelling of electromagnetic problems by a variety of analytical, semi-analytical and numerical methods. Papers may consider significant modelling problems in any area of fields and waves including, for example, fundamental aspects of electromagnetic theory, material and media modelling, scattering and diffraction in the time or frequency domain, inverse problems and propagation. As appropriate, papers should discuss the analytical and/or numerical advantages of the chosen modelling framework over alternative approaches.

<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B10</td>
<td>10 (two sessions)</td>
</tr>
</tbody>
</table>

Scattering and diffraction 1 & 2

Conveners (two minimum, three suggested):
Ludger Klinkenbusch, Giuliano Manara

Convener Emails:
lbk@tf.uni-kiel.de, giuliano.manara@iet.unipi.it

The session will review topics covering the wide range of scattering and diffraction. Methods and applications will be considered including asymptotic high-frequency methods, edge diffraction, surface waves, hybridization of numerical methods with high-frequency methods, and scattering from stochastic surfaces. Scattering from non-linear/anisotropic/dispersive media will also be emphasized. In addition, mathematical and analytical methods for scattering and diffraction will be considered. Specific attention will be also given to different types of illuminating fields, such as plane waves, rays, and beams.
Electromagnetic theory 1 & 2

Conveners (two minimum, three suggested):
Daniel Sjöberg, Henrik Wallén
Convener Emails:
Daniel.Sjoberg@eit.lth.se, henrik.wallen@aalto.fi

This session addresses the most recent advances in electromagnetic theory. It includes all aspects of electromagnetics, and all frequency ranges from statics to optics, including both time and frequency formulations. Of special interest are advances in mathematical modelling of complex structures and materials including aspects of periodicity and quasi-periodicity, topological aspects of ordered structures, solutions of canonical problems, analytic identities, guided waves, mathematical aspects of numerical methods, random and complex media, asymptotic methods, and antenna theory. Owing to the wide scope of Commission B and to the multi-disciplinary nature of contemporary research in electromagnetism, an extended view of the topics above is also welcome. This includes classical theories, as well as the incorporation of electromagnetism and quantum theory on the nano-scale. We expect contributions in this session to present unexpected phenomena, new paradigms or new interpretations of fundamental concepts, new solution methods, or to address questions with respect to well-posedness of different problems and models.

Materials in electromagnetics

Conveners (two minimum, three suggested):
Andrey Osipov, Paul Smith
Convener Emails:
Andre.Osipov@dlr.de, paulsmith2468@gmail.com

The session will address the various aspects related to modelling and applications of materials, with an emphasis on theoretical and computer-aided methods and artificial (or engineered) materials.
The scope of the session will include the following areas:
(1) Electromagnetic properties, modelling and design of artificial materials.
(2) Scattering and propagation in the presence of artificial materials; approximate boundary conditions, reflection and transmission at interfaces of artificial materials (including FSS, metasheets and metasurfaces); canonical diffraction problems for finitely conducting (impedance, coated, dielectric, ferromagnetic, etc.) bodies.
(3) Applications of artificial materials to microwave absorbers, lenses, antenna radomes, cloaking, RCS reduction and EMI shielding.
<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B13</td>
<td>5</td>
</tr>
</tbody>
</table>

Electromagnetics of time-varying scatterers and materials

Conveners (two minimum, three suggested):
Sergei Tretyakov, Ana Díaz-Rubio, Viktar Asadchy

Convener Emails:
sergei.tretyakov@aalto.fi, ana.diazrubio@aalto.fi, viktar.asadchy@aalto.fi

Recently, various time-space modulation structures have been actively investigated, especially for creation of compact and efficient nonreciprocal devices. While the properties of time-varying bulk components in transmission-line and waveguide environments are well known, studies of artificial materials and thin sheets (metamaterials and metasurfaces) formed by time-modulated inclusions need deeper studies. This session will review recent results on scattering properties of arbitrary time-modulated objects and properties of ensembles of many time-modulated inclusions forming metamaterials and metasurfaces. General studies of electromagnetic phenomena in time-varying dispersive structures are also of interest.

<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B14</td>
<td>5</td>
</tr>
</tbody>
</table>

Waves in nonlinear media

Conveners (two minimum, three suggested):
Yury Shestopalov, Eugen Smolkin

Convener Emails:
Yury.Shestopalov@hig.se, e.g.smolkin@hotmail.com

The GASS 2020 session “Waves in nonlinear media” will cover recent achievements in the area of advanced analytical and numerical methods as applied to the analysis of wave propagation, scattering, and diffraction in nonlinear media. Topics of interest include, but are not limited to: development of mathematical models for fields and waves in nonlinear media; mathematical techniques for nonlinear equations of electromagnetics and analytical approaches; nonlinear phenomena and new types of waves; numerical methods for nonlinear problems.
<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B15</td>
<td>5</td>
</tr>
</tbody>
</table>

Forward scattering and propagation

Conveners (two minimum, three suggested):
Cristina Ponti, Andrea Randazzo

Convener Emails:
cristina.ponti@uniroma3.it, andrea.randazzo@unige.it

The modelling of scattering problems by targets of arbitrary shape placed in possibly complex environments is in many cases a challenging task. However, the availability of accurate and reliable forward-scattering techniques is of fundamental importance both for propagation prediction and for providing benchmarks for novel inversion algorithms and imaging techniques, as well as for better understanding the measured data. Possible fields of applications include remote sensing of buried objects or detection and localization of targets behind walls. Beyond the radar applications, a significant interest has been recently devoted to the propagation modelling at high frequencies in a building’s interior with UWB sources, including the scattering of common objects in an indoor environment. Possible approaches may include numerical full-wave techniques, also optimized from the point of view of computational times and memory requirements. High frequency asymptotic techniques are also of interest for addressing the computational issues relevant to very large environments. Analytical methods may be considered, too, when target geometry can be described through canonical shapes. In all cases, shadowing effects, attenuation, multipath propagation, refraction, and diffraction need to be considered for an accurate modelling, especially when dealing with complex scenarios.

<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B16</td>
<td>5</td>
</tr>
</tbody>
</table>

Antennas and microwave devices inspired by electromagnetic band gap

Conveners (two minimum, three suggested):
Karu Esselle, Ladislau Matekovits

Convener Emails:
karu@ieee.org, ladislau.matekovits@polito.it

Several antennas and other microwave devices make use of EBG and many more have been inspired by EBG. In this session, we explore recent advances in this still exciting and advancing area of research.
<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B17</td>
<td>10 (two sessions)</td>
</tr>
</tbody>
</table>

Optimization techniques in electromagnetics: new trends and novel applications 1 & 2

Conveners (two minimum, three suggested):
Sembiam R. Rengarajan, Ahmad Hoofar

Convener Emails:
sembiam.rengarajan@csun.edu, ahmad.hoorfar@villanova.edu

Nature-inspired and other novel global optimization techniques have been revolutionizing the design of complex electromagnetic devices with demanding specifications. This session will provide a forum for discussing advances in developments of optimization techniques and their wide ranging applications in electromagnetics.

<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B18</td>
<td>5</td>
</tr>
</tbody>
</table>

Millimeter-wave antennas/5G communications

Conveners (two minimum, three suggested):
John L. Volakis, Jiro Hirokawa

Convener Emails:
jvolakis@fiu.edu, jiro@ee.e.titech.ac.jp

Millimeter wave applications have seen a growing number of applications from 5G beam forming to automotive guidance, security and imaging for biology. This session is focusing on antennas and antenna arrays, beamforming, MIMO and imaging technologies relating to millimeter wave applications. Applications relating to 5G, biology, automotive guidance, vehicle to vehicle communications, near zone high data delivery, imaging and security are of particular interest.
<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B19</td>
<td>5</td>
</tr>
</tbody>
</table>

Theory and applications of characteristic modes

Conveners (two minimum, three suggested):
Deb Chatterjee, Ahmed M. Hassan
Convener Emails:
ChatD@umkc.edu, hassanam@umkc.edu

Characteristic Mode Analysis (CMA) is an eigenfunction expansion of the currents on scatterers/antennas obtained through use of the well-known Method of Moments solution to the various electromagnetic integral equations under a special operator formalism. Current CMA areas of interest are (i) CMA of lossy objects, (ii) CMA of electrically large problems and the tracking of the numerous ensuing modes, (iii) CMA of scatterers in an inhomogeneous environment, (iv) CMA validations/standardization. This session solicits submissions in the previous areas in addition to any CMA area related to the foundational theory, numerical techniques, and applications of CMA to antenna and scattering problems.

<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B20</td>
<td>5</td>
</tr>
</tbody>
</table>

Title of session, workshop or course:
High-frequency and hybrid methods
Conveners (two minimum, three suggested):
Prabhakar Pathak, Giuliano Manara
Convener Emails:
pathakph@gmail.com, giuliano.manara@iet.unipi.it

This session focuses on high frequency methods, as well as hybrid methods which combine high frequency methods with other techniques to solve complex electromagnetic radiation and scattering problems, whose solutions may become cumbersome or intractable by the use of a single method alone. An example of such hybrid techniques is the combination of any asymptotic high frequency method with a numerical method. The asymptotic high frequency methods may include geometrical optics (GO), physical optics (PO), uniform theories of diffraction such as UTD, STD, PTD, or ITD, etc., or complex source beam (CSB) and Gaussian beam (GB) methods, etc., while numerical methods may be based on integral or partial differential equation formulations.
<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B21</td>
<td>5</td>
</tr>
</tbody>
</table>

International Union of Radio Science: 100 years of history and achievements of Commission B

Conveners (two minimum, three suggested):
Yahya Rahmat-Samii, W. Ross Stone, Ari Sihvola

Convener Emails:
rahmat@ee.ucla.edu, r.stone@ieee.org, ari.sihvola@aalto.fi

The International Union of Radio Science (URSI) was established in 1919 and marks the centennial year in 2019. Commemorating the URSI 100 years in 2019, this session will focus on the history, the progress, and various achievements of URSI during the past 100 years, with a particular emphasis on URSI Commission B.

<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B22</td>
<td>10 (two sessions)</td>
</tr>
</tbody>
</table>

Advanced metamaterial concepts for electromagnetics 1 & 2

Conveners (two minimum, three suggested):
Andrea Alù, Nader Engheta, Dimitrios Sounas

Convener Emails:
aalu@gc.cuny.edu, engheta@seas.upenn.edu, dsounas@gmail.com

Metamaterials have attracted significant attention during the past decade for various exotic new phenomena and applications. Conventionally, they are based on passive and time-invariant elements, but it has recently been shown that lifting these assumptions may open new exciting opportunities for this technology, including parity-time symmetric, topological, computational and nonreciprocal metamaterials. The purpose of this session is to discuss the latest conceptual, theoretical and experimental advances in metamaterials, with a particular focus on metamaterials that go beyond the conventional passivity and time-invariance assumptions, or that combine multiple physical phenomena, for applications over different portions of the electromagnetic spectrum.
<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots (choose 3 or 4 or 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B23</td>
<td>5</td>
</tr>
</tbody>
</table>

Spatial correlation estimation and channel modelling for massive MIMO and near-field communication systems

Convener names (two minimum, three suggested):
Debdeep Sarkar, Said M. Mikki, Yahia M. M. Antar

Convener Emails:
Debdeep.Sarkar@rmc-cmr.ca & debdeep1989@gmail.com, SMikki@newhaven.edu, antar-y@rmc.ca

Realization of compact massive MIMO base-stations for sub-6 GHz/mm-wave 5G ultra-dense wireless networks (UDNs) is currently motivating fundamental research on spatial correlation estimation, properly accounting for electromagnetic (EM) aspects like antenna patterns/polarization. Since antenna illumination is no longer in the form of far-zone plane-waves and there is significant near-field (NF) interaction, updated correlation/channel models are required for better MIMO system design. Moreover, communication engineers are envisioning deterministic modification of massive MIMO channels by using periodic EM structures for futuristic 6G networks. Therefore, the aim of proposed session in URSIGASS 2020 is to stimulate the much-needed unification of EM field and communication theory, regarding propagation channel modelling (FF/NF) of 5G and other emerging wireless technologies.

<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B24</td>
<td>5</td>
</tr>
</tbody>
</table>

Electromagnetic methods for direct and inverse scattering involving stratified media

Convener names (two minimum, three suggested):
Matteo Pastorino, Giuseppe Schettini

Convener Emails:
matteo.pastorino@unige.it, giuseppe.schettini@uniroma3.it

The study of stratified structures and more specifically, the quantitative characterization of materials and layers using direct and inverse electromagnetic wave scattering, involves interdisciplinary knowledge and plays an increasing role in many application areas. These range from nondestructive testing to defense and security, through the wall radar imaging and search and rescue applications, to environmental monitoring and cultural heritage prospecting and preservation. Other possible applications, in course of evolution, are in the analysis of the quality of realization of electronic materials, done in a stratified way, that can be natural- or meta-structured, and can realize several system functions in various applications going from the internet of things, to telecommunications networks, to Thz or photonic devices, and so on. Even if a quite large amount of work has been carried out in last years, a lot of improvement is needed both on direct and inverse methods in order to reach a reliable and easy use of them. The Session will be focused also on such aspects.
<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B25</td>
<td>10 (two sessions)</td>
</tr>
</tbody>
</table>

Semi-analytical modeling techniques in electromagnetics and photonics 1 & 2

Conveners (two minimum, three suggested):
Nikolaos Tsitsas, Grigorios Zouros

Convener Emails:
ntsitsas@csd.auth.gr, zouros@mail.ntua.gr

The need for developing fast and accurate numerical solvers for scattering and radiation problems by devices utilized in modern applications of Electromagnetics and Photonics emerges primarily by the requirement for efficient optimizations of the parameters of such devices achieving specific fields variations. To this end, it is desired to model the associated boundary-value problems by semi-analytical techniques and obtain solutions with controllable accuracy and with small execution time. The purpose of this Session is to include talks from experts on semi-analytical techniques with application domains including but not limited to particle scattering, metamaterials, direct and inverse scattering by inclusions in layered media, propagation in optical waveguides as well as dielectric resonators and lenses. The techniques applied for the modeling are expected to span from integral-equation/differential-equation based methodologies to Galerkin and eigenfunction series expansions techniques.

<table>
<thead>
<tr>
<th>Session</th>
<th>Number of slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>B26</td>
<td>10 (two sessions)</td>
</tr>
</tbody>
</table>

Electromagnetics at the nanoscale and quantum effects 1 & 2

Conveners (two minimum, three suggested):
Amir Boag, Amir Natan

Convener Emails:
boag@eng.tau.ac.il, amirnatan@post.tau.ac.il

The size of nanoscale devices makes it impossible to ignore quantum effects. Therefore, there is a growing demand for a theoretical treatment that combines classical electromagnetics and the quantum behavior of nanoscale systems. In this session, we invite theoretical and experimental researchers that work with such systems to present and discuss their work. Specific session topics will include (but not limited to): quantum transport, nano-antennas, nano-devices with quantum effects, and theory for electromagnetic simulations at the nano-scale.